10. Supernovae, SN and diffuse SN neutrinos

Hydrogen and Helium burning
10. Supernovae, SN and diffuse SN neutrinos

Helium burning

- Burning of helium in the core takes place via reaction
 \[^4\text{He} + ^4\text{He} \rightarrow ^8\text{Be} \]

- The Q-value of the reaction is
 \[Q = m(^4\text{He}) + m(^4\text{He}) - m(^8\text{Be}) \approx -92 \text{ keV} \]
 - \(Q < 0 \) \(\Rightarrow \) endothermic reaction; needs energy to take place

- The effective mean energy for thermonuclear fusion reaction is (the Gamow peak)
 \[E_0 = \left(\frac{bkT}{2} \right)^{2/3} \]
 - \(E_0 = 92 \text{ keV} \) \(\Rightarrow \) \(T = 1.2 \times 10^8 \text{ K} \)
 - \(T \) rather high (for hydrogen burning: \(T \approx 10-20 \times 10^6 \text{ K} \))

- \(\tau(^8\text{Be}) \approx 2.6 \times 10^{-16} \text{ s} \) \(\Rightarrow \) \(^4\text{He} + ^4\text{He} \rightarrow ^8\text{Be} \)
10. Supernovae, SN and diffuse SN neutrinos

Helium burning – producing 12C

- Reaction

$$3 \times ^4\text{He} \rightarrow ^{12}\text{C} \quad (Q \approx 7.3 \text{ MeV})$$

is energetically possible, but its probability is too low to account for the observed abundances of 12C

- Fred Hoyle (1950’s) proposed a two-step process:
 the probability of $^8\text{Be} + ^4\text{He}$ would be greatly enhanced if 12C had an energy level (a resonance state with high cross section) close to the Q-value of the reaction (~ 7.3 MeV)

\implies soon after the excited state ($E^* \approx 7.65$ MeV, $J^{\pi} = 0^+$) was found at Caltech

 - step 1: $^4\text{He} + ^4\text{He} \rightarrow ^8\text{Be}$

 - step 2: $^8\text{Be} + ^4\text{He} \rightarrow ^{12}\text{C}^*$

- Equilibrium concentration of ^{8}Be in ^4He environment

 - At $T \approx 100 \times 10^6$ K and $\rho \approx 10^5$ g·cm$^{-3}$: $N(^8\text{Be}) / N(^4\text{He}) \approx 10^{-9}$

 - Rate: $R_{3\alpha} = N_{^8\text{Be}} \cdot N_{^4\text{He}} \cdot \langle \sigma v \rangle_{^8\text{Be}^4\text{He}}$
10. Supernovae, SN and diffuse SN neutrinos

Helium burning – producing 16O

▶ Once 12C has been created, production of 16O may start, however

▶ reaction

12C* → 8Be + 4He + γ

dominates over

12C* → 12C + 2γ

\Rightarrow 12C + 4He → 16O

▶ Finally, for heavy stars in less than million years, 4He in the core is consumed, and the core contains mostly 12C and 16O
10. Supernovae, SN and diffuse SN neutrinos

Carbon and Oxygen burning

- **Carbon burning:** $T > 5 \times 10^8$ K
- **Oxygen burning:** $T > 10^9$ K

- **Carbon burning reactions**

 $^{12}\text{C} + ^{12}\text{C} \rightarrow ^{20}\text{Ne} + ^{4}\text{He}$

 $\rightarrow ^{23}\text{Na} + \text{p}$

 $\rightarrow \ldots$

- **Oxygen burning reactions**

 $^{16}\text{O} + ^{16}\text{O} \rightarrow ^{28}\text{Si} + ^{4}\text{He}$

 $\rightarrow ^{31}\text{S} + \text{n}$

 $\rightarrow ^{31}\text{P} + \text{p}$

 $\rightarrow \ldots$

- Carbon and oxygen burning produces silicon in the core
10. Supernovae, SN and diffuse SN neutrinos

Silicon burning

- Complex sequence of reactions taking place in relative short time (≈ 1 day) under nearly equilibrium conditions

- The Coulomb barrier of reactions like $^{28}\text{Si} + ^{28}\text{Si} \rightarrow ^{56}\text{Ni}$ is too high for direct fusion (no time for barrier penetration)
 - higher T would increase the photodisintegration rate (iron-group nuclei can resist photodisintegration up to $\sim 7 \times 10^9$ K)
 - "step-by-step process"

- At lower temperatures ($\sim 5 \times 10^9$ K) capture of α-particle dominates
 - $^{28}_{14}\text{Si} + ^4\text{He} \rightarrow ^{32}_{16}\text{S} + \gamma$
 - $^{32}_{16}\text{S} + ^4\text{He} \rightarrow ^{36}_{18}\text{Ar} + \gamma$
 - ...
 - $^{48}_{22}\text{Ti} + ^4\text{He} \rightarrow ^{52}_{24}\text{Cr} + \gamma$
 - $^{52}_{24}\text{Cr} + ^4\text{He} \rightarrow ^{56}_{26}\text{Ni} + \gamma$

- The core is filled with iron-group nuclei and the fusion processes stops, as the binding energy do not release energy any more

\Rightarrow core collapse SN
10. Supernovae, SN and diffuse SN neutrinos

Major nuclear burning processes

<table>
<thead>
<tr>
<th>Burning stage and nuclear fuel</th>
<th>Process</th>
<th>$T_{\text{thr.}}$ [10⁶ K]</th>
<th>Products</th>
<th>Time</th>
<th>T [10⁹ K]</th>
<th>ρ [g cm⁻³]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrogen burning</td>
<td>pp</td>
<td>4</td>
<td>He</td>
<td>7x10⁶ y</td>
<td>0.06</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>CNO</td>
<td>15</td>
<td>He, N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Helium</td>
<td>3α</td>
<td>100</td>
<td>C, O</td>
<td>5x10⁵ y</td>
<td>0.23</td>
<td>7x10²</td>
</tr>
<tr>
<td>Carbon</td>
<td>C + C</td>
<td>600</td>
<td>O,Ne,Ma,Mg</td>
<td>600 y</td>
<td>0.93</td>
<td>2x10⁵</td>
</tr>
<tr>
<td>Oxygen</td>
<td>O + O</td>
<td>1000</td>
<td>Mg,S,P,Si</td>
<td>0.5 y</td>
<td>2.3</td>
<td>1x10⁷</td>
</tr>
<tr>
<td>Silicon</td>
<td>Equilib.</td>
<td>3000</td>
<td>Cr, Fe, Ni</td>
<td>1 day</td>
<td>4.1</td>
<td>3x10⁷</td>
</tr>
<tr>
<td>Core collapse</td>
<td></td>
<td></td>
<td></td>
<td>seconds</td>
<td>8.1</td>
<td>3x10⁹</td>
</tr>
<tr>
<td>Core bounce</td>
<td></td>
<td></td>
<td></td>
<td>millisecs</td>
<td>75</td>
<td>3x10¹⁴</td>
</tr>
<tr>
<td>Explosive burning</td>
<td></td>
<td></td>
<td></td>
<td>0.1–10 s</td>
<td>1.2–7</td>
<td>varies</td>
</tr>
</tbody>
</table>
10. Supernovae, SN and diffuse SN neutrinos

Supernova types – Classification

- Supernovae arises from two different final stages of stars
 - Thermonuclear explosion of a white dwarf in a binary system
 + critical limit called the Chandrasekhar mass ($\sim 1.4 \cdot M_{\text{SUN}}$)
 + standard candle
 - Explosion caused by the core collapse of a massive star ($\sim 8 \cdot M_{\text{sun}}$)
 + no more fuel to produce energy in the core of a star
- Supernovae are classified spectroscopically by the appearance of hydrogen in their spectrum
 - Type I – no sign of hydrogen in the spectrum
 + subdivided into type Ia (white dwarf, no neutrinos produces), Ib and Ic (core collapse SN)
 - Type II – contain hydrogen in the spectrum
- The whole supernova process is more complex than suggested by the simple classification scheme
10. Supernovae, SN and diffuse SN neutrinos

Core collapse supernova – The basic picture – 1/4

- Stars of mass more than $\sim 10 \cdot M_{\text{SUN}}$ can ignite silicon-burning phase
 - producing iron-group elements in the core

- The stability of the iron core against the gravitation is mainly guaranteed by the pressure of degenerate electrons
 - no more radiation pressure generated

- At very large densities the Pauli exclusion principle come into the play
 - each cell in phase space of size h^3 can occupy in maximum two e^-
 - pressure determined by the Fermi momentum (or energy): $p = f(n_e)$
 \rightarrow it has no dependency on the temperature

- The stability condition of the core is given by the Chandrasekhar limit

$$M_{\text{Ch}} = 5.7 \cdot Y_e^2 \cdot M_{\text{SUN}}$$

where Y_e is the number of electrons per nucleus

- when the iron core exceeds this limit, the electron pressure can not compete with the gravitation, and the core-collapse process may start
- for stars of $\sim 15 \cdot M_{\text{SUN}}$ the limit is $M_{\text{Ch}} \sim 1.5 \cdot M_{\text{SUN}}$
10. Supernovae, SN and diffuse SN neutrinos

Core collapse supernova – The basic picture – 2/4

- The cause of exceeding the Chandrasekhar limit is the photo-disintegration of (iron-group) nuclei and electron capture by free protons and heavy nuclei:

\[e^- + p \rightarrow n + \nu_e \]

\[\Rightarrow \text{the number of electrons is strongly reduced} \]
\[\Rightarrow \text{the pressure decreases} \]
\[\Rightarrow \text{the core collapses quickly} \]

- The core collapses in two parts:
 - the inner part (\(\sim 0.6 \cdot M_{\odot}\)) collapses homologously (i.e., the density profile is kept) at a speed of \(\sim 0.5 \text{ cm/ns}\)
 - the outer part collapses at supersonic speed (\(\sim 1-3 \text{ cm/ns}\))

- The outer layers of the star do not notice the collapse of the iron core.
10. Supernovae, SN and diffuse SN neutrinos

Core collapse supernova – The basic picture – 3/4

- More and more electron-capture processes are taking place and the core is becoming more dense
 - further decrease in the electron density, and
 - more neutrinos produced (ν_e)
- The emitted neutrinos can now leave the core zone unhindered
- At density around 10^{12} g·cm$^{-3}$ neutrinos become trapped and they move with the collapsing material
 - neutrino trapping
- The collapsing core finally reaches the nuclear density ($\sim 3 \times 10^{14}$ g·cm$^{-3}$)
 - nuclear force strongly repulsive
 - matter becomes incompressible
 \implies back bounce – strong outward-directed shock wave is generated
- The shock wave should blow up the star as a supernova
10. Supernovae, SN and diffuse SN neutrinos

Core collapse supernova – The basic picture – 4/4

- The current spherical SN computer simulation models suggests that the core bounce and the shock wave formation are not sufficient to explain a supernova explosion
 - the shock wave loses energy and is stalled at the distance of 100–150 km and no explosion is generated
 - something is missing: the role of neutrinos?
- The stalled shock wave may be revised by neutrino heating
 - in some 1D models
- Also the dissociation leads to a pressure increase in the core
 - these may ignite the delayed explosion
- The prompt explosion
 - the shock wave is not stalled
- The object behind the shock wave becomes first a proto-neutron star and finally a neutron star
10. Supernovae, SN and diffuse SN neutrinos

Core collapse supernova – Schematically

PRE-SUPEROVA

COLLAPSE

NEUTRINO BREAKOUT

EXPLOSION

NEUTRINO TRAPPING

COOLING

CORE BOUNCE
The total (gravitational potential) energy available in the collapse to a neutron star

\[E_{\text{grav}} \approx \frac{3}{5} \frac{GM_{\text{NS}}^2}{R_{\text{NS}}} \approx 3 \times 10^{59} \text{ MeV} \approx 5 \times 10^{46} \text{ J} \]

\[\approx 5 \times 10^{53} \text{ erg} \]
10. Supernovae, SN and diffuse SN neutrinos

Core collapse supernova – Energy release – 2

- The total energy release
 \[E_{\text{grav}} \approx 3 \times 10^{59} \text{ MeV} \approx 5 \times 10^{46} \text{ J} \approx 5 \times 10^{53} \text{ erg} \]

- The energy absorbed in Fe photo-disintegration
 \[\approx 0.07 \cdot E_{\text{grav}} \]

- The kinetic energy of the envelope
 \[\approx 0.03 \cdot E_{\text{grav}} \]

- The sum of "observable" energy
 \[E_{\text{obs}} \approx 5 \times 10^{52} \text{ erg} \]

- EM radiation (incl. optically visible part) takes
 \[E_{\gamma} \approx 0.01 \cdot E_{\text{obs}} \]

- Rest, \(\sim 99\% \), of the energy is taken away by neutrinos
 - \(\sim 1\% \) of \(\nu_e \) from an initial breakout burst (duration \(\sim 10 \text{ ms} \))
 - \(\sim 99\% \) are \(\nu \bar{\nu} \) pairs of all flavors from the cooling phase (duration \(\sim 10 \text{ s} \))

- Number of emitted neutrinos: \(\sim 10^{58} \) of all types
10. Supernovae, SN and diffuse SN neutrinos

Core collapse supernova – Neutrino luminosity

- Luminosity
 \[L_\nu = \frac{1}{4\pi D^2} \frac{W_\nu}{<E_\nu>} \]

- Different flavours are created at different temperatures
 - \(<E_{\nu e}> \approx 11 \text{ MeV} \)
 - \(<E_{\bar{\nu} e} > \approx 16 \text{ MeV} \)
 - \(<E_{\nu \mu\tau} > \approx 25 \text{ MeV} \)

- Luminosities
 - \(L_{\nu e}(t) \approx L_{\bar{\nu} e}(t) \approx L_{\nu \mu\tau}(t) \)

- Neutrino pulse is quite short
 - \(D \sim 10 - 20 \text{ s} \)
10. Supernovae, SN and diffuse SN neutrinos

Core collapse supernova – Neutrino energy spectrum

- The flux can be expressed as

\[
f_\nu(E_\nu) = \frac{1}{T_\nu^3 F_2(0)} \times \frac{E_\nu^2}{e^{E_\nu/T_\nu} + 1}
\]

with \(T_\nu = 4, 5, \) and 8 MeV for \(\nu_e, \bar{\nu}_e, \) and \(\nu_x (x = \mu, \tau) \)

- Normalization

\[
W_\nu = 2 \times 10^{59} \text{ MeV}
\]

\[
< E_\nu > = T_\nu \cdot F_3(0)/F_2(0)
\]

F is a Fermi integral
10. Supernovae, SN and diffuse SN neutrinos

Supernova neutrino detection – General

▶ Several kinds of detectors are capable of detecting supernova neutrino burst
▶ Detectors dedicated to the supernova neutrino detection don’t still exist, even thought some of them are proposed
 ▶ problem is the rare explosion rate
▶ The detectors have then primary purpose other than supernova neutrino detection, for example
 ▶ proton decay studies
 ▶ solar neutrino studies
▶ Detector types for supernova neutrino detection
 ▶ Scintillation Detectors (Borexino, KamLAND, SNO+, LENA)
 ▶ Water Cherenkov Detectors (SK, UNO, Hyper-K, MEMPHYS)
 ▶ Heavy Water Cherenkov Detectors
 ▶ Long String Water/Ice Cherenkov Detectors (AMANDA, IceCube)
 ▶ High-Z Detectors (ONMIS, LAND)
 ▶ Liquid Argon (ICARUS, LANNDD, GLACIER)
10. Supernovae, SN and diffuse SN neutrinos

Supernova neutrino detection – Scintillation detectors

- Usually liquid scintillators
 - surrounded by large amounts of PMTs
 - material CₓHᵧ

- Reactions
 - ν–e scat.: \(\nu_x + e^- \rightarrow \nu_x + e^- \)
 - inv. \(\beta \)-decay: \(\bar{\nu}_e + p \rightarrow e^+ + n \) (*)
 - CC-capture of \(\bar{\nu}_e \):
 \(\bar{\nu}_e + ^{12}\text{C} \rightarrow ^{12}\text{B} + e^+ \)
 - CC-capture of \(\nu_e \):
 \(\nu_e + ^{12}\text{C} \rightarrow ^{12}\text{N} + e^- \)
 - NC-excitation of \(^{12}\text{C} \):
 \(\nu_x + ^{12}\text{C} \rightarrow ^{12}\text{C}^* \rightarrow ^{12}\text{C} + \gamma \)

- Detectors
 - KamLAND, BOREXINO
 - SNO+, LENA

- Good energy resolution and low threshold, very little pointing

Fig. 1. Level diagram for the \(^{12}\text{C}, ^{12}\text{N}, ^{12}\text{B}\) triad.
10. Supernovae, SN and diffuse SN neutrinos

Supernova neutrino detection – Scintillation detectors – Number of events

- **Borexino**
 - 300 tons
- **KamLAND**
 - 1 kton
- **SNO+**
 - 1 kton

<table>
<thead>
<tr>
<th>Reaction channel</th>
<th>$\langle E_v \rangle$ (MeV)</th>
<th>$\langle \sigma \rangle$ (cm2)</th>
<th>N_{events}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$v_e - e$</td>
<td>11</td>
<td>1.02×10^{-43}</td>
<td>2.37</td>
</tr>
<tr>
<td>$\bar{v}_e - e$</td>
<td>16</td>
<td>6.03×10^{-44}</td>
<td>0.97</td>
</tr>
<tr>
<td>$v_x - e$</td>
<td>25</td>
<td>3.96×10^{-44}</td>
<td>0.81</td>
</tr>
<tr>
<td>$\bar{v}_x - e$</td>
<td>25</td>
<td>3.25×10^{-44}</td>
<td>0.67</td>
</tr>
<tr>
<td>Total $v - e$</td>
<td></td>
<td></td>
<td>4.82</td>
</tr>
<tr>
<td>$\bar{v}_e + p \rightarrow e^+ + n$</td>
<td>16</td>
<td>2.70×10^{-41}</td>
<td>79</td>
</tr>
<tr>
<td>$^{12}\text{C}(v_e, e^-)^{12}\text{N}$</td>
<td>11</td>
<td>1.85×10^{-43}</td>
<td>0.65</td>
</tr>
<tr>
<td>$^{12}\text{C}(\bar{v}_e, e^+)^{12}\text{B}$</td>
<td>16</td>
<td>1.87×10^{-42}</td>
<td>3.8</td>
</tr>
</tbody>
</table>

Neutral-current excitation

<table>
<thead>
<tr>
<th>Reaction channel</th>
<th>$\langle E_v \rangle$ (MeV)</th>
<th>$\langle \sigma \rangle$ (cm2)</th>
<th>N_{events}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$v_e + ^{12}\text{C}$</td>
<td>11</td>
<td>1.33×10^{-43}</td>
<td>0.4</td>
</tr>
<tr>
<td>$\bar{v}_e + ^{12}\text{C}$</td>
<td>16</td>
<td>6.88×10^{-43}</td>
<td>1.5</td>
</tr>
<tr>
<td>$v_x + ^{12}\text{C}$</td>
<td>25</td>
<td>3.73×10^{-42}</td>
<td>20.6</td>
</tr>
<tr>
<td>Total $^{12}\text{C}(v, v')^{12}\text{C}^*$</td>
<td></td>
<td></td>
<td>22.5</td>
</tr>
</tbody>
</table>
10. Supernovae, SN and diffuse SN neutrinos

Supernova neutrino detection – Scintillation detectors – Number of events in LENA

- LENA would be 50 kton liquid scintillation detector

- Assuming a star of $8 \times M_{\text{sun}} \ (3 \times 10^{53} \text{ erg})$ at $D = 10 \text{ kpc}$ (standard supernova)

- In LENA detector ~ 15000 events
 - $\bar{\nu}_e + p \rightarrow n + e^+; \ n + p \rightarrow d + \gamma \quad \sim 7500 - 13800$
 - $\bar{\nu}_e + ^{12}\text{C} \rightarrow ^{12}\text{B} + e^+; \ ^{12}\text{B} \rightarrow ^{12}\text{C} + e^- + \bar{\nu}_e \quad \sim 150 - 610$
 - $\nu_e + ^{12}\text{C} \rightarrow ^{12}\text{N} + e^-; \ ^{12}\text{N} \rightarrow ^{12}\text{C} + e^+ + \nu_e \quad \sim 200 - 690$
 - $\nu_x + ^{12}\text{C} \rightarrow ^{12}\text{C}^* + \nu_x; \ ^{12}\text{C}^* \rightarrow ^{12}\text{C} + \gamma \quad \sim 680 - 2070$
 - $\nu_x + e^- \rightarrow \nu_x + e^- \ (\text{elastic scattering}) \quad \sim 680$
 - $\nu_x + p \rightarrow \nu_x + p \ (\text{elastic scattering}) \quad \sim 1500 - 5700$

- Accurate and detailed analysis possible
10. Supernovae, SN and diffuse SN neutrinos

Supernova neutrino detection – Water Cherenkov detectors

- Volume of clear water (H$_2$O) or heavy water (D$_2$O), viewed by PMTs
- Reactions in H$_2$O
 - inverse β-decay: $\bar{\nu}_e + p \rightarrow e^+ + n$
 - CC-capture of $\bar{\nu}_e$: $\bar{\nu}_e + {}^{16}\text{O} \rightarrow {}^{16}\text{N} + e^+$
 - CC-capture of ν_e: $\nu_e + {}^{16,18}\text{O} \rightarrow {}^{16,18}\text{F} + e^-$
 - NC-excitation of ^{16}O: $\nu_x + {}^{16}\text{O} \rightarrow {}^{16}\text{O}^* + \nu'_x \rightarrow {}^{16}\text{O} + \gamma$
- Reactions in D$_2$O
 - CC-breakup: $\nu_e + d \rightarrow p + p + e^-$
 - NC-breakup: $\nu_x + d \rightarrow p + n + \nu_x$
 - Elastic scattering (ES): $\nu_x + e^- \rightarrow \nu_x + e^-$
- Detectors
 - No heavy water detectors running (or proposed)
 - Super-K in Kamioka, Japan is running (50 ktons)
 - Proposed: UNO, Hyper-K, MEMPHYS
- H$_2$O: Some pointing and flavor capability
- D$_2$O: Very good flavor sensitivity, some pointing
10. Supernovae, SN and diffuse SN neutrinos

Supernova neutrino detection – Water Cherenkov detectors – MEMPHYS and Hyper-K

- MEMPHYS (~650 kton) proposed to Frejus
- Hyper-K (~650 kton per tank) proposed to Kamioka
 - 2 cylindrical tanks of 48 m × 54 m × 250 m, ~700 m underground
10. Supernovae, SN and diffuse SN neutrinos

Supernova neutrino detection – Water Cherenkov detectors – Number of events

- SK – 50 ktons
- MEMPHYS $\sim \times 10$
- Hyper-K $\sim \times 20$

Table 2: Expected number of events in SK (32 kton of fiducial volume) from a supernova at the Galactic Center.

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Events</th>
<th>Fraction (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\bar{\nu}_e + p$</td>
<td>7349</td>
<td>95.9</td>
</tr>
<tr>
<td>$\nu_e + e$</td>
<td>107</td>
<td>1.4</td>
</tr>
<tr>
<td>$\bar{\nu}_e + e$</td>
<td>23</td>
<td>0.3</td>
</tr>
<tr>
<td>$\nu_x + e$</td>
<td>69</td>
<td>0.9</td>
</tr>
<tr>
<td>$\nu_e + O$</td>
<td>50</td>
<td>0.65</td>
</tr>
<tr>
<td>$\bar{\nu}_e + O$</td>
<td>63</td>
<td>0.85</td>
</tr>
<tr>
<td>Total on e</td>
<td>199</td>
<td>2.6</td>
</tr>
<tr>
<td>Total on O</td>
<td>113</td>
<td>1.5</td>
</tr>
<tr>
<td>Total on p</td>
<td>7349</td>
<td>95.9</td>
</tr>
<tr>
<td>Total</td>
<td>7661</td>
<td>100</td>
</tr>
</tbody>
</table>
10. Supernovae, SN and diffuse SN neutrinos

 Supernova neutrino detection – High-Z detectors

- Large quantity of Pb, Pb(ClO$_4$)$_2$, or Fe (few to tens of kT)
- Pb, Fe
 - scintillator (neutron counter)
- Pb(ClO$_4$)$_2$
 - Cherenkov
- Advantages
 - Pb and Fe have relatively high cross section and are relatively low-cost material
 - Pb has small neutron capture cross section
- Reactions
 - NC : $\nu_x + ^{208}\text{Pb} \rightarrow ^{208}\text{Pb}^* + \nu'_x \rightarrow ^{208-\times}\text{Pb} + xn$
 - CC : $\nu_e + ^{208}\text{Pb} \rightarrow ^{208}\text{Bi}^* + e^- \rightarrow ^{208-\times}\text{Bi} + xn$
- Detectors (these would be dedicated SN neutrino detectors)
 - proposed: OMNIS, LAND
- Good flavor capability, no pointing
10. Supernovae, SN and diffuse SN neutrinos

Supernova neutrino detection – High-Z detectors – OMNIS

- Observatory for Multiflavor Neutrino Interactions from Supernova
- Pb as metal or as perchlorate (with or without Fe)
- Modular structure
- Dedicated supernova neutrino detector

Single- and double-neutron events, per kT of material, no oscillation

<table>
<thead>
<tr>
<th>Material, event type</th>
<th>CC-ν_e</th>
<th>CC-$\bar{\nu}_e$</th>
<th>NC-ν_e</th>
<th>NC-$\bar{\nu}_e$</th>
<th>NC-ν_x</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pb, single-n</td>
<td>59</td>
<td>0</td>
<td>8</td>
<td>37</td>
<td>677</td>
<td>781</td>
</tr>
<tr>
<td>Pb, double-n</td>
<td>26</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>20</td>
<td>47</td>
</tr>
<tr>
<td>Fe, single-n</td>
<td>4</td>
<td>5</td>
<td>2</td>
<td>6</td>
<td>146</td>
<td>163</td>
</tr>
</tbody>
</table>

Number of events versus supernova distance (16 0.5-kT Pb modules)

<table>
<thead>
<tr>
<th>Distance</th>
<th>Counts</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.50 kpc</td>
<td>0.5×10^6</td>
</tr>
<tr>
<td>1.0 kpc</td>
<td>112000</td>
</tr>
<tr>
<td>2.0 kpc</td>
<td>27500</td>
</tr>
<tr>
<td>4.0 kpc</td>
<td>6860</td>
</tr>
<tr>
<td>8.0 kpc</td>
<td>1740</td>
</tr>
<tr>
<td>16 kpc</td>
<td>440</td>
</tr>
</tbody>
</table>
10. Supernovae, SN and diffuse SN neutrinos

Supernova neutrino detection – TPC detector network

- Different approach to large-volume detectors
- A network of spherical TPC detectors for supernova neutrino observation
 - several "small" detectors in (European) underground laboratories
- arXiv:hep-ex/0503029: A network of neutral current spherical TPC’s for dedicated supernova detector
- High-pressure (10 bar Xe, 30–60 bar Ar) diameter 4–6 metres, Micromegas for readout
- Neutrino coherent scattering
 - large cross section: \(\sigma(E_\nu) \approx 10^{-38} \text{ cm}^2 \) at \(E_\nu = 20 \text{ MeV} \) for xenon
 - challenge to measure low-energy recoil (for Xe \(\sim 7 \text{ keV} \), in average)
- Number of events: \(N_{\nu_e} \sim 10, N_{\bar{\nu}_e} \sim 15, N_{\nu_x} \sim 70 \) (total \(\sim 95 \))
- A smaller prototype running in Frejus
10. Supernovae, SN and diffuse SN neutrinos

Supernova neutrino detection – Summary of SNν detectors

<table>
<thead>
<tr>
<th>Detector</th>
<th>Type</th>
<th>Mass [kT]</th>
<th>Location</th>
<th>Events at 8 kpc</th>
<th>Status</th>
<th>Flavor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Super-K</td>
<td>Water-Čerenkov</td>
<td>32</td>
<td>Japan</td>
<td>7000</td>
<td>Running again for SN by Nov 02</td>
<td>$\bar{\nu}_e$</td>
</tr>
<tr>
<td>SNO</td>
<td>Light water</td>
<td>1.0</td>
<td>Canada</td>
<td>450</td>
<td>running</td>
<td>$\bar{\nu}_e$</td>
</tr>
<tr>
<td></td>
<td>Heavy water</td>
<td>1.4</td>
<td>Italy</td>
<td>350</td>
<td></td>
<td>all</td>
</tr>
<tr>
<td>LVD</td>
<td>Scintillator</td>
<td>1</td>
<td>Italy</td>
<td>200</td>
<td>running</td>
<td>$\bar{\nu}_e$</td>
</tr>
<tr>
<td>KamLAND</td>
<td>Scintillator</td>
<td>1</td>
<td>Japan</td>
<td>300</td>
<td>running</td>
<td>$\bar{\nu}_e$</td>
</tr>
<tr>
<td>BOREXINO</td>
<td>Scintillator</td>
<td>0.3</td>
<td>Italy</td>
<td>100</td>
<td>ready 2003</td>
<td>$\bar{\nu}_e$</td>
</tr>
<tr>
<td>Baksan</td>
<td>Scintillator</td>
<td>0.33</td>
<td>Russia</td>
<td>50</td>
<td>running</td>
<td>$\bar{\nu}_e$</td>
</tr>
<tr>
<td>Mini-BooNe</td>
<td>Scintillator</td>
<td>0.7</td>
<td>USA</td>
<td>200</td>
<td>running</td>
<td>$\bar{\nu}_e$</td>
</tr>
<tr>
<td>AMANDA</td>
<td>Long String (water)</td>
<td>0.4/PMT</td>
<td>South Pole</td>
<td>N/A</td>
<td>running</td>
<td>$\bar{\nu}_e$</td>
</tr>
<tr>
<td>ICARUS</td>
<td>Liquid Argon</td>
<td>2.4</td>
<td>Italy</td>
<td>200</td>
<td>running (?)</td>
<td>ν_e</td>
</tr>
<tr>
<td>OMNISS</td>
<td>Pb</td>
<td>2 – 3</td>
<td>USA (?)</td>
<td>>1000</td>
<td>proposed</td>
<td>all</td>
</tr>
<tr>
<td>LANNDD</td>
<td>Liquid Argon</td>
<td>70</td>
<td>USA (?)</td>
<td>6000</td>
<td>proposed</td>
<td>ν_e</td>
</tr>
<tr>
<td>UNO</td>
<td>Water-Čerenkov</td>
<td>600</td>
<td>USA(?)</td>
<td>$>10^5$</td>
<td>proposed</td>
<td>$\bar{\nu}_e$</td>
</tr>
<tr>
<td>Hyper-K</td>
<td>Water-Čerenkov</td>
<td>1000</td>
<td>Japan</td>
<td>$>10^5$</td>
<td>proposed</td>
<td>$\bar{\nu}_e$</td>
</tr>
</tbody>
</table>

APP 2013 – UOulu – 10.28 –
10. Supernovae, SN and diffuse SN neutrinos

Supernova neutrino detection – What can be learned?

- Supernova Core Collapse Mechanism
 - driven by neutrinos?

- Supernova Core Collapse Physics
 - supernova evolution in time
 - convection, magnetic field, hydrodynamics instabilities
 - proto neutron-star EoS
 - black hole formation mechanism

- Neutrino Physics
 - neutrino absolute mass (with some accuracy)
 - neutrino oscillations

- Signatures (by measuring flavour, energy and time structure of the neutrino burst)
 - pulse risetime and shape
 - breakout, luminosity cutoff (→ black hole formation)
 - pulsation
 - cooling
10. Supernovae, SN and diffuse SN neutrinos

SN1987A
10. Supernovae, SN and diffuse SN neutrinos

SN1987A – General

- SN1987A was discovered on Feb. 23, 1987 at a distance of \((50.1 \pm 3.1)\) kpc (or 150000 light years) in the Large Magellanic Cloud.
- It was Type-II (core collapse) SN as hydrogen lines were observed in the spectrum.
- It was the brightest SN since the Kepler SN in 1604:
 - the first time SN was observed at all wavelengths.
 - the first time \(\nu\)’s could be detector from SN.
- The progenitor Sanduleak -69\(^\circ\) 202 was a blue supergiant with a mass of \(\sim20\cdot M_{\odot}\):
 - until then it was assumed that only red giants could be exploded.
 - it was showed (in 1991) by simulations that also blue supergiant star can explode as SN.
 - it lived only \(\sim11\) million years.
- The total energy release (light, not neutrinos) of the explosion amounted to \((1.4 \pm 0.6) \times 10^{51}\) erg,
 - the explosion seemed to take place asymmetrically.
10. Supernovae, SN and diffuse SN neutrinos

SN1987A – Amount of iron produced

- The double-magic nucleus ^{56}Ni was mostly produced in the SN explosion, followed by the decay chain

$$^{56}\text{Ni} \ (EC/\beta^+, \ T_{1/2} = 6.1 \text{ d}) \rightarrow ^{56}\text{Co} \ (EC/\beta^+, \ T_{1/2} = 77.1 \text{ d}) \rightarrow$$

$$\rightarrow ^{56}\text{Fe}^\ast \rightarrow ^{56}\text{Fe}$$

- Characteristic γ-lines of the decay of $^{56}\text{Co} \ (E_\gamma = 847 \text{ keV} \text{ and } E_\gamma = 1238 \text{ keV})$ were detected by the SMM-satellite (at August 1987)

$$l'_\gamma s(^{56}\text{Co}) \implies M(^{56}\text{Fe}) \approx 0.075 \cdot M_{\text{SUN}}$$

- this equals to $M(^{56}\text{Fe}) \approx 25 \times 10^3$ times the mass of the Earth!

- $M(^{57}\text{Co}) \approx 0.009 \cdot M_{\text{SUN}}$

- $M(^{44}\text{Ti}) \approx 10^{-4} \cdot M_{\text{SUN}}$

- $M(^{22}\text{Na}) \approx 2 \times 10^{-6} \cdot M_{\text{SUN}}$
10. Supernovae, SN and diffuse SN neutrinos

SN1987A – The light curve (^{56}Co)

^{56}Co (EC/β^+, $T_{1/2}=77.1$ days) covered the light curve for the first ~ 3 years.
10. Supernovae, SN and diffuse SN neutrinos

SN1987A – The light curve (full)

- ^{57}Co (EC, $T_{1/2} = 272$ days)
- ^{44}Ti (EC, $T_{1/2} = 66$ years)
10. Supernovae, SN and diffuse SN neutrinos

SN1987A – What’s there now?

- It has been observed that the progenitor star Sanduleak -69° 202 really exploded.
- The mass of $\sim 20 \cdot M_{\text{SUN}}$ of the progenitor should have produced a neutron star.
- The Hubble Space Telescope has studied SN1987A regularly since August 1990.
- The (direct) search for a neutron star (i.e., pulsar, or anything else) at the known position of the Sanduleak has still been unsuccessful.
 - behind a dense dust cloud?
 - neutron star has accumulated more mass and collapsed to a black hole?
- The evidence for a pulsar in SN1987A by powering the light curve would be very interesting.
 - pulsar and SN has not yet been observed directly from the same event.
10. Supernovae, SN and diffuse SN neutrinos

SN1987A – Neutrinos

- A total of four detectors (experiments) claimed to have seen neutrinos from SN1987A
 - two water Cerenkov detectors: Kamiokande II and IMB
 - two liquid scintillation detectors: Baksan and Mt Blanc

- Within a certain timing uncertainty, three of the experiments agree on the arrival time of the neutrino pulse, but not Mt Blanc experiment (∼4.5 h earlier)
 - it is generally assumed that Mt Blanc events were statistical fluctuations and are not related on SN1987A events
 - the absolute uncertainties of the event times of the three experiments were: Kamiokande II ±1 min, IMB ±50 ms, and Baksan -54 s, +2 s

- Neutrino signal arrived on the Earth 2–3 hours prior to the optical signal
 - SNEWS – SuperNova Early Warning System (Super-K, LVD, IceCube, Borexino)
10. Supernovae, SN and diffuse SN neutrinos

SN1987A – Neutrinos – Kamioka, IMB, and Baksan data

[Graph showing the energy vs. time for Kamiokande II, IMB, and Baksan data.]

[J.H. Bahcall: Neutrino Astrophysics, Table 15.4]
The basic picture of core-collapse SN is supported by the neutrino observation from SN1987A.

Only $\bar{\nu}_e$-induced events were detected (the first KII event perhaps ν_e).

Average temperature $\langle T_\nu \rangle = (4.0 \pm 1.0)$ MeV and energy $\langle E_\nu \rangle = (12.5 \pm 3.0)$ MeV were obtained (by applying Fermi-Dirac distribution).

The total number of neutrinos (of all flavors) emitted by the SN1987A (from the distance of 1.5×10^{18} km) was estimated as $N_{\text{tot}} \approx 8 \times 10^{57}$.

It corresponds to $E_{\text{tot}} = N_{\text{tot}} \cdot \langle E_\nu \rangle \approx (2 \pm 1) \times 10^{53}$ erg, being in good agreement with expectations.

The SN models investigated were in a strong favour of delayed explosion mechanism, proposing the radius of the resulting neutron star of approximately 10 km.

- neutron star not yet observed, however.

The duration of the neutrino pulse was between 10 and 20 seconds.
10. Supernovae, SN and diffuse SN neutrinos

Supernova rate & two candidates for the next

- The last supernova in our galaxy was observed in 1604 (Kepler)
- The supernova rate (in our galaxy) is expected to be 1–6 per 100 years
 - many SN could not be observed optically behind the interstellar dust
 - Baksan Scintillator Telescope started on June 30, 1980 (still running)

- Two candidate stars in our galaxy expected to explode "soon" as SN
 - Rho Cassiopeiae
 - distance \(\sim 10000\) light years (\(\sim 3\) kpc), mass \(\sim 40\) M\(\text{SUN}\)
 - slowly pulsating, post-main sequence yellow supergiant
 - Eta Carinae
 - distance \(\sim 7500\) light years (\(\sim 2.3\) kpc), mass \(\sim 120\) M\(\text{SUN}\)
 - the closest so called hypernova candidate
 (\(\rightarrow\) direct collapse to black hole)

- Detecting SN neutrinos from Andromeda (M31) or Triangulum (M33) at the distance of \(\sim 750\) kpc requires megaton-class detectors
 - detectors like Hyper-K or MEMPHYS could see some events
10. Supernovae, SN and diffuse SN neutrinos

Diffuse supernova neutrinos – General

- All former core-collapse supernova explosions in the universe (one in every 10 seconds) should have produced a neutrino background, called diffuse supernova neutrino background (DSNB)
 - known also as supernova relic neutrinos
- Diffuse supernova neutrinos are believed to provide a new source of information, among others, on
 - the core-collapse supernova explosion mechanism
 - the supernova rate
 - the star formation rate
- The detection of diffuse supernova neutrinos is a challenge
 - continuous, but low flux of \(\sim 10^2 \, \nu \, \text{cm}^{-2} \cdot \text{s}^{-1} \)
 - due to the expansion of the universe, the energy of these neutrinos has decreased (red-shifted)
 - most probable detection channel: \(\bar{\nu}_e + p \rightarrow e^+ + n \) due to highest cross section (\(\sigma = 6.8 \times 10^{-6} \, \text{pb at 10 MeV} \))
10. Supernovae, SN and diffuse SN neutrinos

Diffuse supernova neutrinos – General

- The detection is also challenging due to the background from nuclear reactor neutrinos (low-energy part) and from atmospheric neutrinos (high-energy part).

- Diffuse supernova neutrino background has continuous but small flux
 - SN ν-burst is observed 'easily' today or in the future and it provides a lot of information.

- If observed, the DSNB is (also) an excellent tool to study supernovae
 - we do not need to wait for tens of years for a SN ν-burst
 - DSNB contains the average SN ν-spectrum to test models, which is probably more important than observing a single SN ν-burst (for SN models).
10. Supernovae, SN and diffuse SN neutrinos

Diffuse supernova neutrinos – Neutrino energy spectrum

- To determine the diffuse supernova neutrino flux three ingredients should be known
 - the cosmic core collapse supernova rate in the causal horizon
 (approximately 10 per second; known quite precisely)
 - the average supernova neutrino emission spectrum, combined with the neutrino oscillation within the supernovae (and in the Earth)
 - geometrical effects of the universe

- To measure it, detector properties need to be included
 - number of target atoms \times the detection cross section

\[
\Phi(E_\nu) = \int_0^{z_{\text{max}}} R_{SN}(z) \times (1 + z) \cdot F_\nu(E_\nu(1 + z)) \times N_T \cdot \sigma(E_\nu) \times \\
\times \frac{c}{H_0} \cdot (1 + z)^{-1} \left[\Omega_\Lambda + \Omega_m (1 + z)^3 \right]^{-1/2} \, dz
\]

$H_0 = 70 \, \text{km} \cdot \text{s}^{-1}$, $\Omega_\Lambda = 0.7$, $\Omega_m = 0.3$
10. Supernovae, SN and diffuse SN neutrinos

Diffuse supernova neutrinos – Neutrino energy spectrum

- Calculated fluxes at the Earth with four different models (detector properties not included)
- Integrated flux \(\approx 100 \, \nu \, \text{cm}^{-2} \cdot \text{s}^{-1} \)
10. Supernovae, SN and diffuse SN neutrinos

Diffuse supernova neutrinos – Experiments

- Diffuse supernova neutrinos have not yet been observed experimentally
- The best experimental limit on the diffuse supernova neutrino flux comes from the Super–Kamiokande experiment (water Cherenkov)
 - improved analysis and new data for 2853 live days (7.8 years)
- The upper limit (from SK) for the flux is
 \[2.8 < \Phi(\bar{\nu}_e) < 3.1 \text{ cm}^{-2} \cdot \text{s}^{-1}, \quad E(\bar{\nu}_e) > 17.3 \text{ MeV} \]

- Liquid scintillation detector provides better background rejection and allows lower energy threshold than water Cherenkov
 - KamLAND, BOREXINO and SNO+ are not massive to reach significant statistics
 - A large-volume (liquid scintillation) detector is required: LENA (50 kton)
LENA is planned 50 kton liquid scintillation detector ~ 1400 metres underground

- It can provide almost background-free energy window of 10–25 MeV for detecting diffuse supernova neutrinos

- LENA can detect 5–10 diffuse supernova neutrino events per year in Pyhäsalmi

- Within ten years of exposure
 - significant constraints on core-collapse supernova models
 - significant constraints on supernova rate in the near universe (up to the redshift $z = 2$)

- If no signal is detected (in ten years)
 - the new limits were significantly lower than all models predict
 - improving the limit given by the SK by a factor of ~ 10
DSNB-ν can be detected in the energy window between \sim10 MeV and \sim25 MeV

- the lower limit comes from nuclear reactor neutrinos
- the upper limit from cosmic-ray induces neutrinos